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Inertial Frames and Tidal Forces Along 
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The gravitational field along the symmetry axis of the Kerr spacetime is 
examined. The equations of parallel transport along this axis are solved for the 
timelike geodesics case, and the corresponding tidal tensor is constructed. 

1. I N T R O D U C T I O N  

As in every axially symmetric case in physics, the symmetry axis of the 
Kerr spacetime should provide the ground for a simplified analysis of the 
gravitational field corresponding to the celebrated Kerr metric [1].  This 
has proved actually to be the case as shown, for example, by the fact that 
Carter [2]  first obtained a maximal analytic extension of the submanifold 
of the Kerr  spacetime consisting of events occurring on its symmetry axis 
before he accomplished the same thing for the spacetime manifold itself 
[3,]. 

In this paper we show that the simplification that is obtained on the 
axis of symmetry allows for an exact and intuitively clear treatment of 
effects which are due to the nonstatic character of the Kerr  field such as the 
rotation induced on inertial frames falling along the axis. The behavior of 
inertial frames is analyzed in Section 3, where other classes of frames, such 
as the locally nonrotating ones, are also examined. Our analysis is based 
on the Kerr-Schild [4]  form of Kerr 's  metric which is presented in Sec- 
tion 2, along with notation. In the fourth and final section the tidal tensor 
is determined, i.e., the tensor on the basis of which one can study the 
physics of the field of gravity inside an inertial frame. The construction of 
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inertial frames along the symmetry axis and the calculation of the tidal ten- 
sor presented in this paper completes the important work of Marck [5] 
who has solved the same problem for the case of geodesics lying off the axis 
of the Kerr spacetime. 

2. C O O R D I N A T E  SYSTEMS A N D  THE METRIC 

In the Boyer-Lindquist  (BL) coordinate system (t, r, 0, ~0) the Kerr 
metric reads [-6] 

ds 2 = - ( 1  - 2 M r / S )  dt 2 - 2 ( 2 M r / S )  a sin 2 0 dtdq9 

+ ( S / A )  dr 2 + S dO 2 + ( A / S )  sin: 0 &o 2 (1) 

where 

Z : = r 2 q- a 2 cos 2 0 

A := r 2 + a 2 - 2 M r  

A := (r 2 q- a2) 2 - zla 2 sin 2 0 
(2) 

and M, a stand for the mass and specific angular momentum, respectively. 
The axis of symmetry consists of the points where sin 0 = 0. At such 

points, however, the angular coordinate ~0 is undefined. Thus, in order to 
study the geometry of the Kerr spacetime along its symmetry axis and the 
neighborhood of the latter, one has to shift from the BL coordinate system 
to one that is well-defined at the points corresponding to 0 = 0, ~. 

A coordinate system which is regular along the axis is that of Kerr and 
Schild (KS). In the KS coordinates (T, x, y, z) the Kerr metric takes the 
form [4]  

as  2 = - - d T  2 4- d x  2 -[- d y  2 "}- d z  2 -[ 
2Mr 3 

r 4 + a 2 z  2 

2 
1 E r ( x d x + y d y ) + a ( x d y _ y d x ) ] Z _ + d z  (3) x - d T +  r2 + ~ r 

where the function r(x, y, z)  is implicitly defined by the equation 

x 2+ y2 z 2 
- - = l  

r 2 + a  2 ~-r 2 (4) 
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The relation between the BL and KS systems of coordinates is 
expressed by the following set of equations 

dT = dt - (2Mr/A) dr 

2Mar 
d~=dcp (r 2 + a  2) Adr  

( 5 )  
x = (r 2 + a2) 1/2 sin 0 cos 

y = (r 2 + a2) m sin 0 cos 

z = r  c o s  0 

These equations show that in the KS coordinates the symmetry axis of the 
Kerr spacetime is defined by the condition 

x = y = 0,  Iz[ = r ( 6 )  

Thus, on the axis itself, the metric (3) takes the simple form 

ds 2 * - d T 2  + dx2 + dyi + dzZ + 2Mr/(z2 + a 2 ) ( - d T  + dz)2 (7) 

where the asterisk over the equals sign denotes the fact that the given 
equation holds along the axis of symmetry only. 

It should be noted that (4) allows r to take negative values. This 
corresponds to the fact that the Kerr metric can be analytically extended to 
regions where r < 0 ,  as shown [2, 3]. Such regions can be mapped in a 
chart with coordinates (T', x', y', z') in which the metric has the same form 
as that given by (3) except for a change of the sign in front of the braces 
(curly brackets). The bottom side of the disc x2+  y2~<a2, z = 0  is then 
identified with the top side of the corresponding disc in the primed coor- 
dinates, and vice-versa. Details of this construction can be found [-7]. 

Equation (4) implies that the vector Ic, where 

( r x - a y  r y + a x  z )  
l c : =  --1, r-W - m -  r2 (8) \ + a  2 '  + a  2 '  

and c = 0, 1, 2, 3 corresponding to T, x, y, z is a null vector with respect to 
the Minkowski metric qab : = diag( - 1, i, 1, 1), i.e. 

qabl~lb = 0 (9) 

Furthermore, it follows from (3) and (8) that the Kerr metric gab can be 
written in the form 

gub = qab + 2ML2lalb (10) 
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where 

L 2 :=  r3/(r 4 + a2z 2) 

It then follows from (9) that 

g~b := ~lab _ 2ML2lal  b 

is the inverse of gab where 

Also 

(11) 

(12) 

l ~ := tffblb (13) 

I ~ = g"blb (14) 

Thus, l~ is a null vector with respect to the Kerr metric, too. 
Equations (6)-(14) are used in Appendices A and B for the calculation 

of the connection coefficients and the curvature tensor of g,b along the 
symmetry axis of the Kerr spacetime. These quantities are needed in the 
following sections. 

3. STATIONARY A N D  INERTIAL FRAMES 

Let us consider a particle confined on the symmetry axis of the Kerr  
spacetime at fixed z. According to (7), such a particle's 4-velocity e0 ~ and 
the vectors e~ a, i =  1, 2, 3, where 

e~  : *  [(Z 2 § aZ)/A ] 1/2 6o ~ 

ei ~ : *  ~ 

e~ ~ :~ ~2 a 

e3 a : ~ [ A / ( z2  § a2) ] 1/2 [(~3 a -  ( 2 M z / A )  fi0"] (15) 

form an orthonormal tetrad. Since its spatial legs e~" have the direction of 
the coordinate axes x i, the frame (15) is not rotating relative to the fixed 
stars. 

Using the covariant vectors {e~b}, where 

e~b : =  gbce~ c (16) 

we can define an orthonormal tetrad of 1-forms dual to the tetrad {ea b} 
given above. This is accomplished by letting 

w~c := qa6e& (17) 
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and then 

and 

(5)-(7) and (15), (16) give 

- / A \m/dT+2MZdz\~ ~ ) 
w~ ~x~ ~ T V 7  ) 

wl~, dx" = dx 

w2 dx" = dy 
^ 

w3~, dx ~ = [(z 2 + a2)/A] l/2 dz 

A ~ 1/2 
= \ ~ j  dt 

d s  2 = ,~a w a w  b 

z - 2J a '2 + dx + z2 + a2/ 

(18) 

dz 2 (19) 

The form of the metric on the symmetry axis given by the last equation is 
the one that allows for easy comparison with the Schwarschild metric to 
which it reduces when a = 0. 

Of course, when M 2 > a  2, the function A(r) vanishes at 
r=r+_ :=  M + ( M 2 - a 2 )  m. In this case the Kerr  metric represents a 
rotating black hole and its Killing vector ~a:___ 6o . is not timelike in the 
region r < r < r+ between the inner and outer horizon. As a result, the 
tetrad (15) can be interpreted as a static frame nonrotating with respect to 
the asymptotic regions of the Kerr  spacetime only for tz[ > r+.  

To find the 4-acceleration of the above frame as well as its rotation 
with respect to a triad of inertial gyroscopes carried by the static frame 
itself, we can use the results of Appendix A. Denoting covariant differen- 
tiation by a semicolon, we have 

e ~ b Mz(z 2 -  a 2) H 
a ~ : =  o;beo = r(z 2+a2)2 e~ ~ 

2MatH 
e a ~ b a2)  2 e a i ;bee) =" (Z 2 @ 

2MarH 
a b a 2 ) 2 6 1 a  e~ ;be0 (z 2 + 

b Mz(z 2 -  a 2) H 
e3 ;beO = r(z2 + a2)2 eo ~ (20) 

where 

H :=  [(z 2 + a2)/A] 1/2 (21) 
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These results, first obtained by Urani and Carlson [8] using the 
"isometry method" of Urani and Kemp [-9], bring out clearly the effect of 
the gravitational source's angular momentum S : =  Ma on the motion of 
particles and frames. Thus, the first of equations (20) shows that, along the 
symmetry axis of the Kerr spacetime, the gravitational field is attractive as 
long as Izl > lal. But at [zl = lal it reverses its direction to become repulsive 
in the central portion, - lal < z < lal, of the axis. At the antipodal points 
z = _+lal, a particle is falling freely by not falling at all. 

The last three of (20), on the other hand, express the well-known 
"dragging of frames" effect associated with a rotating source of gravity. 
Specifically, they show that the static frame (15) is rotating with an angular 
velocity f2s a, where 

2SrH 
( 2 s a  - -  (Z  2 -t- a2)  2 e~ (22) 

relative to a frame of inertial guidance gyroscopes located at the same 
point of the symmetry axis of the Kerr spacetime. Since the factor H 
represents the ratio (dt/&,) of the asymptotic to the static frame proper 
time, we can equivalently say that the gyroscopes are rotating with an 
angular velocity t2G a, where 

2Sr 
~"2Ga = (Z 2 "t- a2) 2 e~ 

relative to the fixed stars. 

(23) 

Let us also consider a particle moving in the Kerr field along an orbit 
characterized by r = const., 0 = const., and 

dq)/dt = w(r, O) := -gt~o/g~o~o = 2MariA (24) 

in the BL coordinates. 
An orthonormal frame comoving with a particle which has its axes 

ee a, eo ~, and eco a pointing in the direction of the r, 0, and q~ coordinates, 
respectively, is called a locally nonrotating frame (LNRF). Such frames 
were first introduced by Bardeen [,10, 11] and they proved to be very 
useful in the analysis of gravitational effects in the Kerr spacetime. A 
LNRF is not inertial, in general. Indeed, using the pertinent results of 
references [,11] and [7, p. 290], one can show that the 4-acceleration 
a~I, NRF and angular velocity relative to comoving gyroscopes f2~LNRV of a 
LNRF are given by 

aaLNRV=(A/~)l/2[f~q_ r--MA 2r(r2+a2)--a2(r--M)sin2A a]  ef ~ (25) 
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and 

2A 1/2Ma3r sin 2 0 cos 0 
~'~aLNRF AS3~ 2 eft 

Ma  sin 0 
+ AS3~ 2 [(r  2 + a2)(3r 2 - a 2) + (r 2 - a 2) a 2 sin 20]  eo a (26) 

respectively. Therefore 

M(r  2 - a 2) H 
lira a~LNRF= a2)2 eft (27) 

s i n 0 ~ 0  ( r 2 +  

and 

lim f2aLNav = 0 (28) 
sin 0 ~ 0 

On the other hand, it follows from (24) that 

lim & o _  2Sr 
sin 0 ~ 0  dt (Z2 -'b a 2 )  2 (29) 

As expected, (27) agrees with the first equation of (20), while (28), (29) 
along with (22) show that on the symmetry axis a LNRF is a frame of 
gyroscopes rotating at a rate of 2Sr/(z2+a2) 2 about the symmetry axis 
itself. 

Let us now withdraw the support that keeps the given particle at a 
fixed point of the symmetry axis of the Kerr spacetime. The particle will 
then follow a timelike geodesic of the submanifold x = y = 0. Therefore, the 
particle's 4-velocity vector u a satisfies the condition uaua=--1,  where 
u a = 2  a :=  dxa/& with r denoting proper time. Moreover, due to the 
stationary character of the given spacetime, the particle's energy per unit 
rest mass at infinity E- -  - u o  = const. Then the particle's orbit is given by 
the first integrals [2]  

= H2E (30) 
and 

where 

= __ [E  2 _ V2(r)] ~/2 (31) 

V2(r) := 1 - 2Mr/(r 2 + a 2) (32) 

Equation (32) shows that V2(r) plays the role of a squared potential for a 
particle falling freely along the axis and allows for easy visualization of the 
orbit's qualitative features [2].  Equation (30), on the other hand, shows 



44 Tsoubelis and Economou 

that one has to distinguish between the cases a2> M 2 and a2~< M 2. In the 
former, the geodesic corresponding to the freely falling particle remains in a 
bounded region of the t-z plane. Depending on whether F : =  1 - E  2 is 
negative, zero, or positive, the particle's orbit extends over the entire z axis. 
It is reflected at z = 0 having started at z = _+ ~ or oscillates within a finite 
region of the positive or negative part of the axis, respectively. Thus, for F, 
z > 0 we have r< ~< z(r) ~< r>, where r>,< = (M/F){ 1 _+ [1 - (Fa/M) 2] 1/2}. 
The closed interval Jr<, r>] includes the point r =  lal where V2(r) has the 
minimum value of 1-M/ la l  and degenerates to this point when 
E2= 1-M/ la l .  This corresponds to the exceptional case of the particle 
which is freely falling by not falling at all discussed earlier in this section. 

In the case of a rotating black hole M2/> a 2, the (30) shows that the 
coordinate time of the freely falling particle becomes unbounded as the par- 
ticle approaches the horizon. This, of course, is a coordinate singularity, 
but its influence on the orbit is quite significant. Consider, for example, a 
particle oscillating between r< and r> as above. When m 2 >  a 2, the point r> 
lies in region I>, where r>r+, while r< lies in region I<, where r<r_ .  
Thus, each time the particle moves from I> to I< or vice-versa, it passes 
through region Ii, I, which lies between the inner and outer horizons. 
Carter's analytic extension, however, is such that at each crossing of a 
horizon the particle moves into a new copy of the region into which it 
enters. As a consequence, the particle oscillating between r< and r> moves 
along a sequence of spacetime regions of the form I<, Ii, t, I>, I'lal, I'<, 
never returning to its starting point. Region Ila I reduces to the point r = lal 
when M 2= a 2, but the existence of only one horizon instead of two does 
not change the effect described above. Let us note finally that region I< 
includes the points where r < 0. It then follows from (32) that V2(r) has a 
maximum of 1 + M/lal at the point r =  - l a l  of I<. As a result, a particle 
which at some instant was at a point with r >  - l a l  can move over to the 
r < - l a l  side of region I< only if its energy squared exceeds (1 + M/lal )m 2. 

Using (15), (16), (30)-(32) we can write the 4-velocity vector of a 
freely falling particle in the form 

where 

u" = Peo" + Qe~ ~ (33) 

P : = H E  

O := ~(~)(H2E 2 -  1) 1/2 (34) 

and ~(~) = -1 ,  0, 1, depending on whether ~ is less, equal, or greater than 
zero, respectively. Since 

p2 _ Q2 = 1 (35) 
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the vector 2~3) ~ defined by 

).(3) a : :  Qeo a + P e r  (36) 

forms with eft and e f  an orthonormal frame comoving with the freely 
falling particle. 

From Appendix A we find that 

2 M a z H  
e a b . =  (37) i :be~ (z 2 + a2)2 e~ ~ 

Combining this equation with (20) we obtain 

eft := ef l  ;bu ~ = - ( 2  ce~ ~ (38) 

where 

2 M a r H  
(2 c = (z 2 + a2)2 [P - (z/r) Q] (39) 

In a similar fashion we find that 
o 
g~ := O c e  fl (40) 

Equations (38) and (20) show that the comoving frame {eft, e~ a, 2~3fl} 
rotates about 2~3) ~ with angular velocity equal to ~c relative to a set of 
gyroscopes carried by the freely falling particle. Equivalently, the frame 
{,~ (i)a }, where 

2(1/a :=  cos ~u(r) eft + sin ~u(z) e: a 
(41) 

)~(2) ~ := - s in  ~(T) eft + cos ~u(z) eft 

2(3 fl is defined by (36) and 

~P = ~2 c (42) 

is an inertial frame associated with a particle of energy at infinity/~ = m E  
falling freely along the symmetry axis of the Kerr spacetime. 

4. THE TIDAL TENSOR 

In the freely failing nonrotating frame {2(0 a} constructed in the 
previous section the gravitational field vanishes (principle of equivalence). 
Therefore, a physicist riding such a frame has to measure the relative 
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acceleration of free particles in order to determine whether the spacetime is 
actually curved or not. This acceleration is determined by the tidal tensor 
[-12] C(0(j ) which is defined by 

C(o(j ) = Rabcaua2(obuC2(o a (43) 

where R,b,.j is the curvature tensor of the spacetime in question. 
In the case of the Kerr spacetime, it is of particular interest to see how 

the magnetic components go~ of the metric, which are responsible for the 
frame-dragging effects, show their presence within an inertial frame. Since 
the influence of these terms is also incorporated in the tidal tensor, we turn 
to calculating its components. 

Using the results of Appendix B we find that the nonvanishing 
components of the curvature tensor with respect to the static frame (15) are 
given by 

Roto~ = Ro~o~ = - R ~ o ~ / 2  = R ~ / 2  = - R ~  = - R ~ I ~  

M r ( z  2 -  3a 2) . 
- (z  2 + a 2 ) 3  = . I i  (44)  

M a z ( a  2 -- 3z 2) 
R 0 ~  = R 0 ~  = --R0~i~/2 = r(z 2 + a2) 3 =: I 2 

and the symmetries of the tensor Rabcd. From these expressions and 
(33) (36) we find that 

C(0(j ) = diag(I1, 11, - 2I~ ) (45) 

In order to obtain a physical intuition of this result, let us compare it 
with the case of an inertial frame falling along a radial direction of the 
Schwarzshild spacetime [-13]. The latter is obtained by simply setting a = 0 
in the equations obtained so far. Thus, if we denote the corresponding tidal 
tensor by CS(i)(j), we will have 

CS(i)(j) = diag ( I j ,  I~ ~, - 211 s) (46) 

where 

IlS := M / r  3 (47) 

It is well-known that (46) implies the following. The radial direction 
along which the frame's origin falls can be identified with the z axis. Then, 
free particles which are found on the z axis and near the origin will be 
repelled from the latter while those that lie in the x - y  plane of the frame 
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will be attracted toward it. As a result, a set of test particles which at a 
given instant had vanishing velocity relative to the inertial frame and 
formed a spherical shell centered at the frame's origin will, at a later 
instant, form a surface of revolution elongated along the z axis. 

Turning to (45), we see that the behavior of test particles near the 
origin of the inertial frame which falls along the symmetry axis of the Kerr 
spacetime is essentially the same with the one described above 
corresponding to the case of radial free fall in the spherically symmetric 
Schwarschild field. With a big difference. As a result of the nonvanishing of 
a, I~ changes sign at Izl = 3 ~/2 lal. This implies that, as the inertial frame 
moves from the region where [zl>31/Z[al into the region where 
]zl < 3 ~/2 lal, a reversal of the tidal forces direction takes place. Thus, test 
particles lying on the frame's z axis are now attracted toward the origin 
while those on the x-y  plane are repelled from it. It should be noted that, 
provided a2> (3M2/4), the tidal forces turning point Izl = 31 /2  lat lies out- 
side the event horizon which crosses the z axis at [z] = r+ in the case of a 
rotating black hole. Thus, when the above condition on the angular 
momentum parameter is satisfied, a rocket ship can enter the region where 
the tidal forces operate in the reverse of the usual fashion without running 
the risk of being swallowed by the black hole. 

A P P E N D I X  A 

Faridi [14] has given the connection coefficients F~bc of the Kerr 
metric in the KS system of coordinates in terms of the null vector l a. In this 
appendix we present an outline of Faradi's method for calculating F~bc and 
give explicit expressions for Fab ,. := gadF%c valid on the symmetry axis of 
the Kerr spacetime. 

From (9) and the fact that P is a null vector with respect to the 
Minkowski metric it follows that 

6ijlilJ= 1 (A1) 

where i, j = l, 2, 3. This implies that 

l i laj=O (A2) 

where ( ),i := 3( )/Ox( Therefore 

l i j  = l(i, jl + IEi.ja = c~(~ij - lilj) + ~e~jkl k (A3) 

where round and square brackets denote the symmetric and antisymmetric 
part, respectively, and eisk is the totally antisymmetric symbol with e~23 = 1. 
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The functions e and fl can be determined easily 
equat ion 

r, i = L 2 [ x i  q- z(a/r) 2 ~3i] 

from l 3 = z/r and the 

(A4) 

which follows from (4), The result reads 

az  k le.j= L2 [ ( 6 u - l ; l j ) - - ~ e ~ k l  ] (A5) 

F rom (11), on the other  hand, one obtains 

a2z 3-1 L 2 , i = L 4 ~ f 3 a 2 z 2 - - 1 )  r , i - -2--~-~i  J 
L\ r" 

(A6) 

The form (10) of the Kerr  metric shows that equat ions (A3)-(A6) 
suffice for the calculation of F.bc. Taking into account  the fact that  on the 
axis, where Iz[ = r 

L 2 * r ( z 2 + a 2 )  -~ 

l i *--- r,i ~- ( z / r )  c~i 3 

L2,i * (z/r)(a 2 - z 2 ) ( z  2 + a2) -2 ~i 3 

and 

Ii,i * J r ( g o -  6969) - ae;j3](z 2 + a2) I (A7) 

one obtains 

1-ooo = M L  2, 0 = 0 

Fooi = -Fioo = ML2,i  * M(z/r) (a  2 - z2)( z2 + a e) 2 (~i 3 

Fo~ = - 2 M  { L 21(id~ + I(;L 2, j~ } 

�9 _ 2 m z 2 ( z  2 + a 2)  - 2  0 0  " _1_ 2M(2z 2 _ a2)(z 2 + a 2) - 2  6i3a[3 
F~o = -2M(L2lEid3 + lEiL2,j3) * 2Mar  (z 2 + a 2)-2 s~3 

FOk = m { l;l]L 2,k + lkliL 2, j -- ljlk L2,i + 2L2( l;l(j,k) + 1]Z[;,k 3 + lkIE~d]) } 

= M(z /r ) (z  2 + a 2) -2 [2z 2 (~i3(~jk 
+ (a 2 -- 3z 2) ( ~ i 3 6 j 3 ( ~ k  3 - -  2ar((~j3gik3 q- 6k3e0-3)  "] (A8) 
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A P P E N D I X  B 

The curvature  tensor componen ts  R.bca can be calculated using the 
formula [ 15 ] 

Rabca = �89 + gbc,~a-- gac,ba -- gba.~c) + FebcF~.ae __ Febd/'ec (B1) 

Beyond the quantities given in the previous appendix, one needs the second 
partial derivatives of  L 2 and l i. A calculation similar to the one that led to 
(A8) gives the following results 

L 2,ij * r( 3a 2 _ z2)(z 2 + a 2) -3 ( cS i j _ 3c~i3c~j3) 
9 3 l i , j  k ~ (z / r ) (z  2 + a z ) - 2  [-(a 2 q._ Z2) gU~k3(a2 + Z-) 6jk6 i q- (a 2 + z 2) 6j~6i 3 

q- ( 3z2 -- a2) 6i3(~j36k 3 "~- ar(3eu3 cSk 3 + tik3 gi  3 + eik3 6 j  3 - -  ~/jk)] (B2) 

Using the above equations,  one finds that the nonvanishing components  
are those that  can be obtained from the list that  follows and the symmetries 
of the curvature tensor. 

Rolol * Ro2o2 * [A/ (z2  + a2)] I1, 

Ro123 * Ro231 * -R0312/2 = / 2 ,  

2 M z  \ 
R1313 ~ R2323 --* - 1 + z2-5--~a2 ) 11 

where 

M r ( z  2 - 3a 2) 
I 1 .-- (2,2 ~- a2) 3 , 

R0303 * _R1212 * _211 

Ro131 * Ro223 * [ 2 M z / ( z  2 + a2)] I 1 

(B3) 

M a z ( a  2 - 3z 2) 
12"-- r ( z2  q- a2)3 (B4) 
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